
John Donoghue NINDS CONTRACT NUMBER: N01NS92322 11/8/2002 

1  

 
 
 
 
 
 

Quarterly Progress Report #8 
Prepared by John Donoghue, Nicholas Hatsopoulos, Mijail Serruya, 

Elie Bienenstock, Lauren Lennox and Beth Travers 
 
 

Quarter  8: July 1, 2001-September 30, 2001 
 

 
Neural Prosthetic Control 

NINDS CONTRACT NUMBER: N01NS92322 
Department of Neuroscience and Brain Science Program 

Brown Medical School 
Brown University 

 
 

  



John Donoghue NINDS CONTRACT NUMBER: N01NS92322 11/8/2002 

2  

Contents 

1. Introduction 2 
2. Summary of Related Achievements this Quarter 3 
3. Neural Decoding 3 

        3.1 Non Parametric decoding algorithms  4 

        3.2 Principal Component Analysis 5 
        3.3 Tuning Maps 6 
        3.4  Wilcoxon Signed Rank Test 6 

 
 

This Quarterly Report will focus on progress made in Neural Decoding. In what follows, 
we report on the estimation of conditional firing maps. Each such map (for a given 
cortical cell) can be thought of as a 2-D  tuning function, or receptive field, which 
characterizes the response of the cell given hand velocity or hand position. It is one of the 
two major components of the generative model that we use in our Bayesian approach, 
and needs to be estimated (learned) off-line.  First there is a summary of the overall 
objectives of the contract.  
1. Introduction 
A number of neurological disorders, such as spinal cord injury, MD and ALS result in the 
inability to make voluntary movements.  A major reason for paralysis in these disorders is a 
disconnection of the signal from a normal brain from the spinal cord or muscles.  Devices 
that can detect and decode motor commands have the potential to restore voluntary actions 
in these individuals.  The purpose of this project is to demonstrate the ability to use neural 
signals to control real world devices in monkeys; such devices can ultimately serve as 
prosthetic aids for paralyzed individuals.   

Control signals for prosthetic devices can be derived from a number of sources, 
including the eyes, muscles, and EEG.  These signals are, however, rather limited in the 
number of dimensions they can control. Going beyond a one dimensional control signal is 
difficult and often interferes with natural behavior.  For example, two dimensional EEG 
control requires full attention to control without distraction (such as gaze shifts).  By 
contrast, populations of neurons appear to contain rich signals, potentially able to control 
multiple dimensions independently.  However, chronic recording of multiple neurons in 
primates has been technically challenging, the ability to decode neural activity into 
meaningful control signals is poorly understood and the ability to control devices using such 
signals is not fully developed.   

The overall goal of this work is to develop a means to bring a robotic arm under near 
real time neural control using a multineuron signal derived from a recording device that is 
chronically implanted in a macaque monkey motor cortex.  This project has three specific 
objectives.  The first objective is to develop and test technologically advanced neural 
recording devices in a non-human primate model.  This work examines the stability, 
efficiency and biocompatibility of electrode arrays and the suitability of the primary motor 
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cortex as a sight to obtain neural recordings.   Once recorded, neural activity must be 
decoded into meaningful control signals.  The optimal methods for such decoding are not 
obvious.  A second objective of the project is to examine various decoding methods and 
evaluate their ability to be useful control signals.  This requires mathematical tools and signal 
processing that reconstructs intended actions from abstract, neurally based motor 
commands generated in the cortex.  This aspect of the project involves fundamental motor 
control questions, such as what coordinate system is used to encode voluntary actions.  A 
third objective of this project is to show that such signals can be used to control devices 
such as a robotic arm or a computer interface.  These devices serve as a proxy for the lost 
limb and can be used to recreate useful actions like those intended for the arm.  Successful 
completion of these goals would suggest that this approach could be used to restore 
movement in paralyzed humans. 

2. Summary of Related Achievements this quarter  
This quarter we implanted one additional array (99-3) in MI and further developed methods 
to enhance the speed of training monkeys for use in array testing. We sent out 4 
hemispheres for histology (Thionin and GFAP staining).  We continued development of 
neural decoding methods, including new probabilistic methods.  
3. NEURAL DECODING 

The goals of this aspect of the project are to determine: whether we can recover the 
hand trajectory using the activity of multiple MI neurons; how reliable this reconstruction 
will be; how many simultaneously recorded neurons are required; can the computation be 
performed fast enough to be used in a prosthetic device; and finally can the reconstruction 
algorithm be made adaptive enough that it will withstand changes in the functional 
properties of recorded neurons as may result for instance from motion of the implant 
between successive days or weeks (see above). In a first step, we have demonstrated that 
linear regression methods based upon small numbers of neurons provide a moderately 
accurate estimate of any new hand trajectory. This work is being submitted for publication.  
In a second step we developed non-parametric Bayesian methods with the goal of achieving 
better trajectory reconstructions. The provisional conclusions of our study at the present 
time, based on partly simulated data, suggest that simultaneous from several hundred cells, 
when they are available, will provide very accurate reconstructions of hand trajectory. 

In previous works, authors have considered a variety of models, including a cosine tuning 
function (Georgopoulos et al. 1986), and a modified cosine function (Moran and 
Schwartz 1999). In these highly-constrained, parametric, models, smoothness is 
intrinsically built in, in the form of strong assumptions about the shape of the tuning 
function. 
   

3.1  Non-Parametric Decoding  Algorithms   In contrast, we have explored various non-
parametric models, which can accommodate a wide range of functional forms, and where 
smoothness can be adjusted.  Hand position (x and y position of manipulandum, digitized 
at 167 Hz) is first smoothed using a smoothing spline, and then subsampled at regular 
intervals of 50 ms. We then compute the x and y velocities as the derivatives of the spline 
at these knot points, and convert them to polar coordinates (r,θ), where r is the speed and 
θ is the direction of motion. Spike trains are binned using the same 50-ms resolution, and 
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in the following, we report on maps for the spike count in the [t-150,t-100] bin, where t 
(ms) is the time at which the velocity is measured. The velocity space (polar coordinates) 
is discretized, using a 100x100 grid. We denote by f(v) the empirical mean firing of a 
given cell at velocity v. This empirical estimate is built from a training set representing 
about 15 minutes worth of data (training data is limited to recording periods that satisfy 
several requirements meant to ensure starionarity to te extent possible). The sampling of 
the 100x100 velocity grid is nonhomogeneous and relatively sparse in some regions. 
Clearly, since the data is noisy and sparse, we need to compute an optimal estimate of the 
tuning function by an appropriate smoothing of the training data. We shall denote this 
estimate by g(v).  
  
Our non-parametric models are related to Markov Random Fields (MRF) (Geman and 
Geman 1984), and include a spatial prior probability, which encodes our expectations 
about the variation of neural activity in velocity space. The MRF prior states that the 
expected firing at a given velocity depends only on the firing at the 4 neighboring 
velocities in the discretized 100x100 grid. We consider two possible prior models: 
Gaussian and “robust.” A Gaussian prior corresponds to the assumption that the firing 
rate varies smoothly. A robust prior (e.g. a Student's t-distribution) assumes a heavy-
tailed distribution of the spatial variation, and implies piecewise smooth data. The use of 
such priors is motivated by the examination of the histograms of differences of observed 
firing rates between adjacent velocities. These histograms (or log-histograms) are heavy-
tailed and exhibit shapes typical of images of natural scenes, where robust statistical error 
functions are often used. 
 
Our models also include a term that represents the likelihood of observing a particular 
firing rate f(v) given the true (i.e., to-be-estimated) rate g(v). This likelihood corresponds 
to a particular generative model for the spike count f(v) in a 50-ms time bin, given the 
mean g(v). A convenient—albeit biologically somewhat implausible—form for the 
generative model is a Gaussian distribution. A biologically more satisfactory model is the 
Poisson distribution of mean g(v). 
 
Adopting a Bayesian formulation, we construct Maximum A Posteriori (MAP) estimates 
of a cell's conditional firing  g = {g(v)}. In the special case of Gaussian prior and 
Gaussian likelihood (we refer to this case as the G+G model below), the MAP estimate is 
easily seen to be the minimizer of a quadratic energy function, with a parameter λ which 
adjusts the amount of smoothing. When λ is 0, the optimal g is the observed firing rate at 
each v. If on the other hand λ is infinite, the optimal g is a constant function, equal to the 
global mean of the observed firing rates. The smoothing parameter λ is adjusted by cross-
validation. This is a standard regularization problem, which can be solved in closed form. 
In contrast, when using a Poisson likelihood (generative model) and Robust prior 
(referred to as P+R below), no closed-form solution exists. We then find a "reasonable" 
(possibly sub-optimal) solution by an iterative algorithm. 
 
3.2  Principal Component Analysis  We further examined the result of applying 
Principal Component Analysis (PCA) to our non-parametric estimates of the tuning 
functions for a collection of 25 motor cortical cells. Each tuning function is a 10,000-
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dimensional vectors, and so are the eigenvectors. We typically use the first 4 largest 
eigenvalues, which account for about 80% of the variance. 
 
To obtain a quantitative comparison of various models, we used a cross-validated log-
likelihood criterion. Specifically, 10 trials out of 180 were left out for testing, and models 
were fit on the remaining data, yielding estimated conditional mean rates ("firing maps"). 
We then computed the log-likelihood of the spike counts in the test data, given the model. 
This provides a measure of how well the model captures the statistical variation in the 
training set. The whole procedure was repeated 18 times for different test/training 
partitions.  
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3.3 Tuning Maps  The following figure shows examples of tuning maps for three 
different cells under the four different models: Cosine (Georgopoulos et al. 1986), 
Modified Cosine (Moran and Schwartz 1999), Non-Parametric G+G,  Non-Parametric 
P+R. 
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3.4 Wilcoxon Signed Rank Test  To test whether one model is significantly better than 
an other, we applied a nonparametric test: the Wilcoxon signed rank test. The following 
table shows that the non-parametric models do a better job of explaining new data than 
the parametric models. The Poisson+Robust fit provides the best description of the data, 
and PCA post-processing yields further significant improvement. Note the very high p-
values. The improvement afforded by the P+R model indicates that the conditional firing 
rate is well described by regions of smooth activity with relatively sharp discontinuities 
between them. It appears that PCA reduces the variance of nonparametric models without 
increasing much of the bias, and so it increases the log-likelihood significantly. 
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7.6294e-06 233.6086 PCA of P+R over 
P+R 

7.6294e-06 32.2218 P+R over M/S 

7.6294e-06 50.0685 P+R over Cosine

0.0047 15.8333 G+G over M/S 

7.6294e-06 24.9181 G+G over Cosine

p-value Log Likelihood 
Ratio 

Method 


